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The influence of an in-pile collimator is shown for two cases: A. Divergence % of the incoming beam 
large compared to the mosaic width r /of  the monochromating crystal and the divergence ~1 after the 
crystal (~0 > r/, ~1). B. 2q > ~0, ~,. If the same energy resolution for a three-axis spectrometer is required, 
an optimized comparison of the counting rates in these two cases reveals a factor of two in favour of case 
B. This is an important reduction in measuring time for investigations of horizontal dispersion branches, 
for quasielastic and incoherent scattering, where only the energy (no moment um) resolution is concerned. 

1. Introduction 

The impression that an in-pile coll imator is useless 
was gained in many discussions the authors have had 
with scientists performing inelastic neutron-scattering 
experiments. Therefore we looked into this problem 
in more detail and found that it is indeed very useful in 
many cases. 

For inelastic neutron-scattering experiments per- 
formed with a three-axis spectrometer one uses Bragg 
reflexion for the monochromat ion  and analysis of  the 
neutrons. 

The Bragg law is 
7~ 

k -  (1) 
d .  sin 0B 

where k is the wave number  of the Bragg scattered 
neutrons, Oa the Bragg angle and d the spacing of the 
reflecting lattice planes. 

The distribution of the Bragg-reflected neutrons, 
characterized by the distribution of wave vectors k, 
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depends on the collimations s0 and al before and after 
reflexion and on the mosaic width t? in the crystal. 
This holds for the monochromator  as well as for the 
analyser. 

In the following sections we discuss the cases 
s0 > r/, ~ and 2r/> %, ~ .  For these two cases the shape 
of the k distribution of the reflected neutrons changes 
appreciably. In § 4 we show that the counting rate of  a 
three-axis spectrometer is different for these two cases. 
Given a certain overall energy resolution of the ap- 
paratus we make an optimization by looking for the 
best set of  the parameters %, aa and r/for the two cases. 

2. Case A. Neutron monoehromation for a0>~,0~l 

The hatched region in Fig. 1 shows the m o m e n t u m  
distribution of the Bragg-scattered neutrons having a 
coll imator for the incoming neutrons only, character- 
ized by the coll imation angle %. The distribution of the 
k vectors, taken across the incoming white neutron 
beam, is indicated by the dotted area. The effect of  a 
second coll imator for the scattered neutrons, character- 
ized by the coll imation angle al is shown by cross 
hatching in the reflected beam only. 
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Provided the collimator angle a~ of the latter col- 
limator is given by 

0 < ~1 < c¢0 - 2r/ (2) 

the momentum distribution of the neutrons impinging, 
for example, on a sample is limited in the simple way 
shown in Fig. 1. The uncertainty of k in beam direction 
is given by: 

Ak 
-k  =r/" cot OB. (3) 

3. Case B. Neutron monochromation for 211 > (I0,011 

The symbols for the different momentum distributions 
of the neutrons in Fig. 2 for the case r/>> ~0/2 correspond 
to those in Fig. 1. 

The orientation of the momentum distribution of 
the Bragg-scattered neutrons is governed by an angle 0: 

tan 0 = 2 tan OB. (4) 

Instead of equation (2) we find now: 

0 _< cq < 2 r / -  ~0 (5) 

and for equation (3): 

Ak ~o 
- cot 08 = c~0. cot 0 .  (6) 

k 2 

incoming neutrons scattered neutrons 

o 
reciproca[ lattice point 

Fig. 1. Bragg reftexion at a single crystal with a mosaic angle 
r/smaller than half the collimation ~0 of the incoming neu- 
trons, cq defines the collimation of the scattered neutrons. 
0B is the Bragg angle. 

incoming neutrons scottered neutrons 

ao 

¢to-2~ 

o 
reciprocal tattice point 

Fig. 2. Bragg reflexion at a single crystal with a mosaic angle 
~/larger than the collimation ~o of the incoming neutrons. ~1 
defines the collimation of the scattered neutrons. 

4. Counting rate for a given energy resolution of a 
three-axis spectrometer 

In, for example, an incoherent inelastic neutron-scat- 
tering experiment one can match the energy uncertainty 
dEo of the neutrons striking the sample to the eneigy 
uncertainty AEa of the neutrons accepted by the 
analyser. The highest counting rate for a given overall 
energy resolution is achieved if the relation dE1= 
A E o = A E  is fulfilled. In further discussion we assume 
that this matching has been done. We concentrate on 
the question of how the counting rate differs for the 
two arrangements described in ~ 2 and 3. For  each of 
these cases we will determine the best set of c~0, ~1 and 
r/, giving the highest counting rate for the given overall 
energy resolution. We discuss the optimization for the 
monochromator  (dEo) first. 

The energy uncertainty of the neutrons striking a 
sample (see Appendix) is given by: 

( - ~ )  a = 2 cot 0B . ~/~-2 + a2: (7) 

for case A and 

for case B. Here we assumed a Gaussian law for the 
mosaic distribution as well as for the transmission 
function of the collimators, whereas the Figures are 
drawn for rectangular distributions for clarity. 

The counting rate I is proportional to the area F of  
the cross-hatched region in Figs. 1 and 2. (The vertical 
divergence is left out of the discussion). This area F is 
connected generally (Dorner, 1972) to the horizontal 
divergences and mosaic width by: 

F--- ao. a l .  r/ . (9) 
1/~o 2 + a 2 + 4r/2 

An optimization of  this area by considering equa- 
tions (7) and (8) gives: 

~A ~ ~IA 

for case A and 
~0B ~ ~ I B  

for case B. 
Putting 

we get: 
r/A =½~0B 

(lO) 

(11) 

(12) 

and for the counting rates 1a for c a s e  A(o~oA very large) 
and In for case B(r/8 very large) 

FA=Oq,4 . ~IA , FB=½aO~ . OqB , (13) 
IB= 2L, . 

In Fig. 3 we give a picture of the momentum distri- 
butions for cases A and B for the optimized conditions. 
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The energy uncertainty of the neutrons is given in 
Fig. 3 by AE/E=2Ak/k. The result of equation (13) 
holds for incoherent scattering experiments as well as 
for coherent one-phonon scattering, provided one has ~ 
a horizontal dispersion curve. 

Within the framework described by Kalus (1973) the 
result of equation (13) can be generalized for the case 
of dispersion curves which are not flat. 

One finds" 
1 

IB=211-  -2+cot  0B. cot-~o l" I a .  (14) 

The angle ~0 is related in a simple way to grad co. Grad 
co is the steepness of the dispersion curve (rT0 is equal to 
zero for grad co--0). It was further assumed that the 
vector grad co lies in the scattering plane. 

For the analyzer system of the three-axis spectrom- 
eter the above considerations for the monochromator 
system can be repeated. This means that one can gain 
a further factor of two in the counting rate by changing 
from an analyser of type A to one of  type B. This holds 
generally even for AEo very different from AEt. Of 
course, one always tries to match AEo~_AE~. 

5. C o n c l u s i o n  

The use of case B has some advantages, because one 
can optimize in a predetermined way the shape of the 
momentum volume k by just changing the collimation, 
using always the same crystal with a relatively high 
mosaic angle. For fiat dispersion curves the advantage 
is quite evident, while for general dispersion curves one 
can determine by means of equation (14), which of the 
two cases A and B is better suited. 

Case B is very well suited for a double-monochro- 
mator system with one collimator between the two 
crystals (defining ~0) and the other after the second 
crystal (defining ~).  In this case the replacement of the 
'in-pile' collimator, which defines ~0, is very easy to 
achieve. 

Ak 

Fig. 3. Shape of the momentum elements of the scattered neu- 
trons for the optimized cases A and B described in the text. 
Ak defines the energy resolution via AE/E= 2AK/K. 

chromator as given by Cooper & Nathans (1967): 

P(Ak,,,1)~_exp {_ [ (Ak'/k') tan Om + 7' ] 2 
rlm 

+ 2_!A_k,/kJ) ta_n 0m+_y, + ~,1 (A1) 
CX0 ~1 

where yl is an angular variable in the divergence of the 
outgoing beam (width ~1). After integrating equation 
(A1) over ~1 we find: 

~o z + c~ + 41/2 
P(Aki)~ exp - z z ........ 

~00¢ 1 _~_ 0~2/,]2 _jr_ 0(2/72 

x [(Aki/kl) tan 0m)2[ (A2) 

which gives 

AEi =2 Aki 2 z z 2 z 2 )  
E, kf = 2 cot OM \ C~ + o~ + 4q 2 . (A3) 

Equation (A3) can as well be derived from the con- 
siderations of Bjerrum Moller & Nielsen (1970). 

We wish to thank Dr M. T. Hutchings for helpful 
discussions. 

A P P E N D I X  

To derive an expression for AE/E=2Ak/k after a 
monochromating or analysing system we write the 
horizontal distribution P of neutrons for a m o n o -  

References 

BJERRUM MOLLER, H. & NIELSEN, M. (1970). Instrumenta- 
tion for Neutron Inelastic Scattering Research, pp. 49-76, 
Vienna: IAEA. 

COOPER, M. J. & NATHANS, R. (1967). Acta Cryst. 23, 357- 
367. 

DORNER, B. (1972). Acta Cryst. A28, 319-327. 
KALUS, J. (1973). Kermechnik, 15, 228-230. 


